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Abstract

Members of the Burkholderia cepacia complex (Bcc) are an important cause of opportunistic

or nosocomial infections that may be hard to treat due to a high incidence of multidrug resis-

tance. We characterised a collection of 51 clinical isolates from this complex, assigning them

to 18 sequence types using multi-locus sequence type analysis. Resistance to eight com-

monly used antibiotics was assessed using by using agar-dilution assays to calculate MICs

and widespread and heterogeneous multidrug resistance was confirmed, with eight strains

proving resistant to all antibiotics tested. Disc diffusion screening of antimicrobial activity of a

range of plant essential oils against these Bcc isolates identified six oils with significant activ-

ity (lavender, lemongrass, marjoram, peppermint, tea tree and rosewood) and broth microdi-

lution assays indicated that of these lemongrass and rosewood oils had the highest activity,

with MIC50 values of 0.5% and MIC90 values of 1%. Comparison of MIC and MBC values

showed that four of these six oils, including lemongrass and rosewood, were bacteriocidal

rather than bacteriostatic in their effects. Qualitative analysis of the four bacteriocidal essen-

tial oils via GC/MS indicated the presence of 55 different component compounds, mostly

monoterpenes. We assessed selected essential oil components as anti-Bcc agents and

demonstrated that terpinen-4-ol and geraniol were effective with MICs of 0.125–0.5% (v/v)

and 0.125–1% (v/v), respectively. Time-kill studies indicate that these two alcohols are effec-

tive against non-growing cells in an efflux-dependent manner. Analysis of bacterial leakage

of potassium ions and 260 nm UV-absorbing material on treatment with terpinen-4-ol and

geraniol suggested that the observed anti-Bcc activity was a consequence of membrane dis-

ruption. This finding was supported by a gas chromatography analysis of bacterial fatty acid

methyl esters, which indicated changes in membrane fatty acid composition caused by terpi-

nen-4-ol and geraniol. These essential oils or oil components may ultimately prove useful as

therapeutic drugs, for example to treat Bcc infections in CF patients.
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Introduction

The Burkholderia cepacia complex (Bcc) is a group of genetically distinct but phenotypically

very similar bacteria that were originally isolated as plant pathogens [1]. During the late 1980s

Bcc bacteria emerged as an important cause of opportunistic or nosocomial infections [2,3,4].

Bcc organisms are particularly virulent pathogens in cystic fibrosis (CF) patients and are asso-

ciated with a poor prognosis, a rapid decline in lung function and reduced median survival

[5,6]. A significant minority of CF patients become infected with Bcc bacteria at some point,

for example a recent study at an Irish adult cystic fibrosis centre suggested a prevalence of

around 6% and mortality caused by the most virulent species (B. cenocepacia) of 55% [7].

Cross-infection with the Bcc between CF patients is important but it is believed that most

infections have an environmental origin [8]; all 20 species of the complex can be isolated, in

varying frequencies, from CF or non-CF patient sputum and at least 17 of these species can

also be isolated from the environment [4,9,10]. The pathogenic potential of the complex varies

between species with B. multivorans and B. cenocepacia known to be particularly virulent [11].

The heterogeneous intrinsic resistance of Bcc bacteria to a wide range of antibiotics, includ-

ing the antipseudomonal colistin, has been well documented (e.g. [12,13,14]). Infections are

normally treated with a combination of two or three antibiotics, commonly including tobra-

mycin and meropenem, which may be delivered IV, orally or via a nebuliser [15,16]. However,

such treatments do not have a good foundation in terms of clinical data [17]. Due to wide-

spread multidrug resistance in Bcc strains, new treatment options are needed [18]. Novel anti-

microbial strategies against the Bcc recently proposed have included the use of antisense

technologies to modulate essential gene expression and the use of plant-derived essential oils

[19,20]. Essential oils (EOs) are complex hydrophobic liquids containing multiple volatile low

molecular weight compounds (often terpenes or terpenoids) and obtained by distillation,

mechanical expression or solvent extraction from plant matter. Essential oils and essential oil

components (EOCs) have been previously shown to have potentially useful antimicrobial

activities against gastrointestinal and other pathogens [21,22,23,24]. Recently, 3 essential oils,

from Eugenia caryophyllata (clove, synonym: Syzygium aromaticum), Origanum vulgare (oreg-

ano) and Thymus vulgaris (thyme), were found to be strongly active against Bcc strains, includ-

ing environmental and clinical strains and antibiotic resistant isolates [20].

This study builds on current knowledge through a novel sequence of four components:

characterisation of a collection of clinical isolates of the Bcc in terms of multilocus sequence

typing (MLST) and antibiotic susceptibility; assessment of antimicrobial activity of a range of

essential oils against these Bcc isolates; assessment of anti-Bcc antimicrobial activity of essen-

tial oil components; and characterisation of the mechanism of action of essential oil compo-

nents against the Bcc.

Materials and methods

Bacterial strains

Fifty-one clinical isolates were collected between 2003 and 2007. These were obtained from 41

CF patients (from various parts of the UK) when they visited the Freeman Hospital, Newcastle,

UK for lung transplantation. Where multiple isolates of the same species (based on PCR-RFLP

analysis) were identified from the same patient, only the first confirmed as from the Bcc was

included in the study. Multiple isolates from the same patient belonging to different species

were included in the study. As controls, six laboratory strains, from the panel of Bcc strains

referred to by Mahenthiralingam et al. were used (Table 1)[25]. These control strains were

selected to represent different species of the Bcc and were sequenced as reference strains,
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obtaining 100% identity with the sequences listed in the MLST database. Strain LMG16656 /

J2315 (Table 1) is representative of a lineage of B. cenocepacia rarely isolated from the environ-

ment that spreads between CF patients and has a completely sequenced genome [26,27]. The

strain is metabolically versatile and possesses numerous virulence and drug resistance

functions.

Culture, storage and recovery of isolates

After overnight culture in tryptone soy broth (TSB), cells were pelleted, re-suspended in

2xTSB with 25% (v/v) glycerol and stored at -80˚C until required. After thawing Bcc isolates

were inoculated on to tryptone soy agar (TSA) and incubated overnight at 37˚C. Strain purity

was confirmed by growing the cultures on B. cepacia agar base (BCAB; Oxoid) with B. cepacia
selective supplement (polymixin B, gentamycin, ticarcillin; Oxoid). Working cultures were

maintained on TSA slants and subcultured weekly.

Characterization of the Bcc by MLST

The protocol developed by Sullivan et al. was adopted for DNA extraction and automated sys-

tem performance and sequencing conditions [28]. PCR amplification conditions and primers

used were selected based on the information available on the MLST co-ordinating website

(http://pubmlst.org/bcc).

Template DNA for PCR was extracted as follows. Between 5 and 10 fresh colonies of an

overnight culture were transferred into 0.5 ml distilled water and heated to 100˚C for 15 min.

The suspension was centrifuged at 15000 × g for 2 min and supernatant transferred into a

fresh tube. PCR amplification was carried out using a liquid handling robot (TheOnyx, Auto-

mated Lab Solutions GmbH). All PCR reagents were maintained at 4˚C in the reagent rack.

Each PCR was performed in a final volume of 50 μl using a Taq polymerase PCR master mix

(ReadyMix, ABgene) with oligonucleotide primers at 0.4 μM and 6 μl of extracted template

DNA. Thermal cycling conditions were: initial denaturation at 96˚C for 1 min; 30 cycles of

denaturation at 96˚C for 1 min, primer annealing at 58˚C for 1 min, extension at 72˚C for 2

min; final extension step of 72˚C for 5 min. PCR products were purified using a MultiScreen

384-PCR Filter Plate (Merck Millipore) and eluted twice with a total volume of 70 μl distilled

water. Sequencing was carried out on both DNA strands: 6 μl of purified PCR product was

mixed with 3 μl of DYEnamic ET terminator sequence premix (Amersham Biosciences) and

10 pmol of each MLST gene primer. Thermal cycling conditions for sequencing reactions were

95˚C for 2 min, 30 cycles of 95˚C for 20 s, 50˚C for 15 s and 60˚C for 1 min. Salts and unincor-

porated dye terminators were removed using a MultiScreen SEQ384 Filter Plate (Merck

Table 1. Control strains.

Accession number Species Source / location

LMG 16232 B. vietnamiensis CF, Sweden

LMG 18863� B. cenocepacia CF, Canada

LMG 18825� B. multivorans CF, UK

LMG 16656 / J2315� B. cenocepacia CF, UK

LMG 17997 B. cepacia Urinary tract infection, Sweden

LMG 18870 B. stabilis CF, Canada

CF, Cystic fibrosis; UK, United Kingdom;

� Epidemic strains (strains that can transfer between patients)

https://doi.org/10.1371/journal.pone.0201835.t001
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Millipore). DNA sequencing was performed using an automated MegaBACE 1000 96-capillary

sequencer (Amersham Biosciences). DNA sequence data were analyzed and converted into

FASTA format using the MegaBACE Sequence Analysis Software with integrated cimaron

v1.53 phredify base caller. Sequences were queried against the PubMLST Bcc database (http://

pubmlst.org/bcc) to obtain a sequence type (ST).

Antibiotic susceptibility testing by agar dilution method

Agar dilution assays were performed for 8 commonly-used antibiotics: aztreonam, ceftazi-

dime, ciprofloxacin, colistin, meropenem, tetracycline, tobramycin, and trimethoprim. All

antibiotics were purchased from Sigma-Aldrich (UK) except meropenem, purchased from

Sequoia Research Products, UK. Antibiotics were serially diluted in 2-fold steps and then 2 ml

of each dilution of antibiotic was added to 18 ml of Isosensitest agar (ISA) and mixed thor-

oughly before pouring. Two control plates containing no antibiotics were prepared; one was

used to check the sterility of the medium and the other was used as a growth control. Plates

were used within 24 h of preparation.

A standardised inoculum was prepared for each strain tested. After overnight incubation in

Isosensitest broth ISB at 37˚C, bacteria were collected by centrifugation at 3000 × g for 5 min

and suspended in sterile distilled water. Turbidity was adjusted to 0.5 McFarland standard by

adding sterile distilled water, giving a cell density of ~ 1×108 cfu ml-1. This suspension was fur-

ther diluted by a factor of 10 and then 1 μl of diluted broth culture, providing a final inoculum

of approximately 104 cfu, was spot inoculated onto agar plates within 15 min of preparation of

the inoculum. Inoculated plates were incubated for 16–18 h at 37˚C before determination of

MICs. MIC was defined as the lowest concentration at which there was no visible growth.

As Bcc breakpoints were not available for all antibiotics tested against the Bcc, where neces-

sary breakpoints were those advocated by the British Society for Antimicrobial Chemotherapy

(BSAC) for the respective method for Pseudomonas spp. [29] and for this reason P. aeruginosa
NCTC10662 was included as a reference strain (Bcc members were previously classified in the

genus Pseudomonas). Also B. cepacia LMG 16656/J2315 from panel strains of the Bcc [25] was

included in the study, allowing better comparison of our results with other studies.

Essential oils

The EOs used in testing the susceptibility of members of the Bcc were purchased from two dif-

ferent retail suppliers as described in Table 2. As EOs are not certified to a standard composi-

tion, batch numbers are given.

Qualitative analysis of essential oils using GC/MS

The chemical composition of oils was determined by GC/MS using a Trace 2000 GC (Thermo

Finnigan) interfaced with a Voyager single quad MS apparatus (Thermo Quest). Parameters

are listed in Table 3. Mass spectra and retention times of essential oil components were identi-

fied by comparing them with those of authentic standards from the mass spectra of National

Institute of Standards and Technology library. Chromatographic profiles of oils were com-

pared against ISO standards as follows: lemongrass, ISO 4718:2004; tea tree, ISO 4730:2004;

marjoram, ISO 4728:2003; rosewood, ISO 3761:2005.

Essential oil components tested

Terpenoid standards used in the study and their purity percentages as obtained from Sigma-

Aldrich (UK) were: alloaromadendrene (-) (98%), camphene (95%), camphor (R) (95%),
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caryophyllene (-) (trans) (98.5%), 1,8-cineole, citral (95%), p-cymene (99%), geraniol (98%),

geranyl acetate (97%), ledene (+) (95%), limonene (R) (+) (97%), linalool (±) (95%), linalyl ace-

tate (97%), 6-methyl-5-hepten-2-one (96%), myrcene (90%), α-pinene (-) (99%), β-pinene (-)

(99%), sabienene hydrate (97%), α-terpinene (85%), γ-terpinene (97%), terpinolene (95%), ter-

pinen-4-ol (95%), α-terpineol (96%), terpinyl acetate (±) (90%) and verbenol (95%).

Disc diffusion assays

Disc diffusion assays were performed in triplicate for the EOs listed in Table 2 on 57 strains of

the Bcc (51 clinical isolates and 6 reference strains) using two media, TSA and ISA, according

to BSAC criteria [30]. A standardised inoculum was prepared for each tested Bcc strain as

described above for antibiotic susceptibility testing, but the 0.5 McFarland suspension was

Table 2. List of essential oils used in this study.

Number Essential Oil Plant Species Supplier Batch Number

1 Lavender Lavandula angustifolia Boots UK Limited 67L

2 Geranium Pelargonium graveolens Boots UK Limited 10L

3 Roman camomile Chamaemelum nobile Boots UK Limited 15N

4 Tea Tree Melaleuca alternifolia Boots UK Limited 18L

5 Lemongrass Cymbopogon citratus Boots UK Limited 44K

6 Peppermint Mentha x piperita Boots UK Limited 17N

7 Marjoram Origanum majorana Holland and Barrett Retail Limited 19975

8 Fennel Foeniculum vulgare Holland and Barrett Retail Limited 18189

9 Pine Pinus sylvestris Holland and Barrett Retail Limited 20043

10 Cedarwood Cedrus atlantica Holland and Barrett Retail Limited 19981A

11 Juniper Juniperus communis Holland and Barrett Retail Limited 19111

12 Frankincense Boswellia carterii Holland and Barrett Retail Limited 19474

13 Black pepper Piper nigrum Holland and Barrett Retail Limited 19057

14 Camomile Matricaria recutita Holland and Barrett Retail Limited 19029

15 Ylang-Ylang Cananga odorata Holland and Barrett Retail Limited 19252

16 Rosemary Rosmarinus officinalis Boots UK Limited 17K

17 Bergamot Citrus aurantium var. bergamia Boots UK Limited 21N

18 Sweet orange Citrus x sinensis Holland and Barrett Retail Limited 19567

19 Rosewood Aniba rosaeodora Holland and Barrett Retail Limited 19780

https://doi.org/10.1371/journal.pone.0201835.t002

Table 3. Parameters used in GC/MS analysis of essential oils.

Column Zebron ZB5-MS

Stationary phase 5%phenyl-95%-Dimethyl polysiloxane copolymer

Dimensions 30 m long 0.25 mm × 0.25 μm

Sample quantity injected 0.5 μl

Carrier gas Helium at a constant flow of 1 ml min-1

Oven profile 50˚C to 275˚C at 5˚C min-1. Final temperature held for 5 min

Inlet temperature 250˚C

Split ratio 100:1

Ionization mode Electron impact positive mode

Ion source temperature 250˚C

Multiplier 149 V

Mass range analysed 1–300

https://doi.org/10.1371/journal.pone.0201835.t003
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diluted 1:100 instead of 1:10. Within 15 min of the preparation of the inoculum, the plates

were inoculated: 100 μl of diluted bacterial suspension was placed on the agar plate and, using

sterile cotton swabs, spread evenly over the entire surface of the agar. Plates were allowed to

dry for 10 min then, in triplicate, 5 μl of each neat EO was pipetted onto a sterile 6 mm diame-

ter filter paper (Whatman No 4) disc and applied to the agar surface. Assay plates were incu-

bated at 37˚C for 24 h. For each disc, the diameter of a zone of inhibition was measured and a

zone of diameter > 7 mm was considered as positive.

MIC and MBC assay using broth microdilution method

The MICs of the six most active EOs (Table 4) were determined against the clinical and refer-

ence isolates using the broth microdilution method, essentially as described by BSAC [30].

Broth cultures of each strain were prepared at a concentration of approximately 1×108 cfu/ml

as described previously. Tween80 was added to ISB at a final concentration of 0.001% (v/v) to

emulsify the EOs [21]. EOs were added to ISB containing Tween80 to give a final EO concen-

tration of between 8% and 0.125%. The contents of each tube were vortex mixed at high speed

for 30 s to ensure that the EO was evenly dispersed throughout the broth. 100μl of bacterial

culture and 100 μl of EO dilution were then added to the wells of a 96-well microtitre plate.

After the bacteria were incubated for 24 h, the MIC was determined by observation of the low-

est concentration where there was no visible growth. Subcultures of 10 μl were taken from the

clear wells of the microtitre tray (and from control wells) and spot-inoculated onto ISA allow-

ing determination of minimum bacteriocidal concentrations (MBC; the lowest concentration

at which no growth on antibiotic-free medium was observed).

MIC50 and MIC90 [31] were calculated by ranking MICs for all 57 clinical and reference

strains in ascending order. The MIC50 was taken as the median value. The MIC90 was the

value of the 51st (0.9 x 57) in the list, and represented the concentration of antibiotic that

would inhibit 90% of the isolates tested.

MICs and MBCs for each of the EOCs listed above were determined for all strains using the

broth dilution assay as described previously. Stock solutions were prepared in ethanol and vor-

texed thoroughly for 30 s. The maximum concentrations of camphor and camphene tested

were 1% (v/v) while for other compounds this was 8% (v/v). The final concentration of ethanol

in the broth was never more than 1% (v/v). Aromadendrene and ledene were tested on the ref-

erence strains only (and showed no inhibitory effect).

Table 4. Antimicrobial activities for selected EOs.

Essential oil Mean a Standard Deviation Mean MIC a,b Mean MBC a,b MIC50
b MBC50

b MIC90
b MBC90

b

Teatree 12.4 1.8 1.9 3.8 2 4 2 8

Lemongrass 14.0 3.0 0.7 2.2 0.5 2 1 4

Lavender 10.4 1.5 1.5 7.1 2 >8 2 >8

Marjoram 12.0 2.0 1.8 2.7 2 2 4 4

Rosewood 15.1 3.0 0.5 1.3 0.5 2 1 4

Peppermint 12.5 2.7 1.4 5.2 2 8 2 >8

a) Mean of 51 clinical and 6 control strains.

b) Minimum inhibitory and bactericidal concentrations (% v/v)

https://doi.org/10.1371/journal.pone.0201835.t004
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Time kill studies in presence and absence of a carbon source

A plate-count-based method was adopted to allow sensitive assessment of viability, since Hersh-

berger et al. [32] showed no difference between time-kill experiments performed using a 24-well

plate method and more traditional test tube methods. To 1 ml of ISB in a 24-well tissue culture

plate, to which the MBC concentration of terpinen-4-ol or geraniol had already been added, 1

ml of a 1:100 dilution of a 0.5 McFarland standard suspension of either stationary or mid-expo-

nential phase culture (final concentration of 5x105 cfu ml−1) was added. The plates were then

incubated at 37˚C. Samples (50 μl) were removed after 0, 30, 60, 120, 240 min incubations; at

each time point an undiluted sample (20 μl) and ten-fold dilutions (10−1, 10−2, 10−3, and 10−4)

prepared in saline were spread directly onto ISA plates with a micropipette. Plates were incu-

bated for 24 h and the number of surviving organisms (log10 cfu ml−1) was determined. Each

experiment was carried out six times using the same culture with a single replicate plate (three

wells and double sampling from each well in a plate) generated at each sampling time.

For time kill studies in the absence of a carbon source the procedure above was followed,

except that cells and EOCs were suspended in phosphate buffered saline (PBS) rather than a

nutrient medium.

Time kill studies in the presence of an outer membrane permeabilizer

EDTA was added to the 1 ml of broth containing terpinen-4-ol or geraniol described in the

previous section, so that a final concentration of 10 mM EDTA was present. Terpinen-4-ol

was tested at a concentration of 0.125% (v/v) and geraniol at 0.25% (v/v); concentrations cho-

sen based on the MICs of the EO components in the presence of EDTA. Cells not treated with

EDTA and cells treated with EDTA alone were included as controls. The incubation, collection

of samples and plate counts were carried out in the same manner as that of time kill studies in

the presence of a carbon source.

Time kill studies in the presence of an efflux inhibitor

To the 1 ml cell suspension (see above) 1ml of ISB containing double the inhibitory concentra-

tion of either terpinen-4-ol or geraniol (0.25% and 0.5%, v/v respectively), carbonyl cyanide

m-chlorophenylhydrazone (CCCP), a protonophore that inhibits energy production in cells

was added to produce a final concentration of 250 μM. The incubation, collection of samples

and plate counts were carried out in the same manner as that of the time kill studies in the

presence of a carbon source (see above).

Assessment of membrane damage by analysis of potassium leakage

Loss of potassium ions was studied according to the method of Codling et al. [33]. Bacteria cul-

tured on TSA slants were streaked onto freshly prepared TSA plates and incubated overnight at

30˚C, then harvested by centrifugation (3000 × g for 15 min) and washed three times with ultra

pure water (Elgastat UHP filtered deionized water). Bacteria were adjusted to 2 mg dry weight

of cells per ml in ultra pure water. Terpinen-4-ol and geraniol solutions were prepared at double

the required concentration (0.5% and 1% (v/v), respectively), so that the addition of an equal

volume of cell suspension produced a final concentration of 1 mg dry weight of cells per ml. The

bacteria were exposed to terpinen-4-ol and geraniol at 37˚C and 10 ml samples were removed at

0, 30, 60, 120, 240 min. Cells were removed by filtration using 0.2 μm pore filters and the filtrates

were analysed for K+ content using atomic absorption spectrophotometry. EOC-free controls

with and without Tween80 were prepared under the same conditions to determine normal K+

flux over the time course of the experiment. The positive control was a lysed cell suspension
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obtained by thermal shock (80˚C for 30 min). Experiments were conducted in triplicate. The

potassium concentration in the supernatant was measured using an atomic absorption spectro-

photometer (Philips PU9200X). The instrumental parameters were as follows: potassium hollow

cathode lamp, wavelength 766.5 nm; fuel and flow, acetylene at 2 l min-1; oxidant and flow, air at

10 l min-1; type of flame, slightly oxidizing; monochromator, 1.8/1.6.

Leakage of UV (260 nm)-absorbing material

Cells from the working culture (100ml) of B. cenocepacia were collected by centrifugation

(3000 × g for 15 min), washed three times with PBS, and resuspended in PBS. Terpinen-4-ol

and geraniol were added to the cell suspension at final concentrations equivalent to their

MBCs and then the suspension was incubated at 37˚C with agitation. Samples (10 ml) were

then taken at 0, 30, 60, 120 and 240 min and filtered through a 0.2 μm pore filter. The concen-

tration of the constituents released was determined by UV absorption measurements of each

filtrate at 260 nm. Results were expressed as percentages of 260 nm-absorbing material in each

interval with respect to the total release by heat treatment (as described above). The experi-

ment was carried out with three replicates for each sample. Cells treated only with Tween80

were also included to study the effect of this surfactant on the leakage of cellular constituents.

Membrane fatty acid analysis

Bacteria from the working culture were incubated for 24 h at 28˚C on TSA with and without

terpinen-4-ol or geraniol. Fatty acids were determined as methyl esters from whole-cell hydro-

lysates, according to the procedure of the SHERLOCK microbial identification system [34]. 40

mg of cell dry mass was subjected to derivatization in screw-cap Teflon test tubes. For the

preparation of esters, cells were saponified at 100˚C for 30 min with 1 ml of reagent I (45 g of

sodium hydroxide, 150 ml of methanol, 150 ml of distilled water), methylated at 80˚C for 10

min with reagent II (325 ml of 6 M hydrochloric acid, 275 ml of methanol), extracted with 1.25

ml of reagent III (200 ml of n-hexane, 200 ml of methyl tert-butyl ether), and base washed with

3 ml of reagent IV (0.27 M sodium hydroxide, 0.68 M sodium chloride). The fatty acid methyl

esters (FAME) were analysed by GC using an Agilent 5890 autosampler gas chromatograph,

equipped with a DB-WAX column; parameters are shown in Table 5. The FAME peaks were

identified by comparison to those of a standard FAME solution (Supelco, 37 component

FAME standards) and were integrated using the Varian Star Chromatography Workstation

version 5 (Varian Inc.).

Results

Genotyping of clinical isolates

MLST data were obtained for the 51 clinical strains and used to assign them to 11 different spe-

cies groups and 18 sequence types (STs, Table 6). There were no novel Bcc ST types when

Table 5. Gas chromatography parameters for FAME analysis.

Column DB-WAX; 30 m×0.225 mm×0.25 µm

Inlet temperature 260˚C

Detector temperature 310˚C

Injection volume 0.5μl

Carrier gas and Flow rate Nitrogen 30 cm s-1

Oven programme 140˚C to 260˚C at 4˚C min-1. Initial and final temperatures held for 5 min

https://doi.org/10.1371/journal.pone.0201835.t005
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compared with existing MLST data (PubMLST, http://pubmlst.org/bcc). The STs identified in

the collection were either previously reported from CF patients (STs: 3, 15, 25, 31, 40, 72, 97,

116, 125, 206, 240, 267, 319) or from the environment (3, 88, 125, 154, 165, 290, 291). Three

STs (15, 116, 206) identified in the collection were also previously reported from UK CF

patients. In the PubMLST data set, ST 88 was reported only from the UK environment, but the

present study reported isolation from a CF patient. ST40 was reported from a non-CF patient

from the UK and from CF patients in other countries. Average nucleotide identity analysis of

the housekeeping genes used in MLST indicated that all strains provisionally identified as

“other species” were most similar (greater than 96% ANI) to B. cenocepacia.

Antibiotic resistance of clinical isolates

The library of Bcc clinical isolates was tested for resistance to a range of commonly used antibi-

otics: aztreonam, ceftazidime, ciprofloxacin, colistin, meropenem, tetracycline, trimethoprim

and tobramycin. MICs were obtained for each antibiotic and each strain (S1 Table). These data

indicated that resistance is strain-specific, irrespective of genomovar / species status (Table 7).

MIC values were converted into susceptibility categories (susceptible; intermediate; resistant)

according to breakpoints as described for Pseudomonas spp. (Table 8; [29]). While BSAC’s most

recent advice is that it is not possible to establish clinically-relevant MIC breakpoints for the Bcc

(http://bsac.org.uk/wp-content/uploads/2014/06/Burkholderia-Susceptibility-Testing-final.pdf),

the Clinical and Laboratory Standards Institute has recently supplied such guidelines [35] for

two of these antibiotics (ceftazidime and meropenem) and these breakpoints were used in

Table 8. Bcc isolates are commonly multiply antibiotic resistant and intrinsically resistant to

colistin. All 51 of our isolates were resistant to tobramycin and colistin, while a majority were

resistant to all other antibiotics tested except meropenem (22% of isolates resistant). Ceftazidime

and aztreonam also had some activity against the Bcc strains: 43% and 33% of strains were sus-

ceptible, respectively. Ciprofloxacin and tetracycline were only active, to an intermediate or sus-

ceptible levels respectively, against single (and different) ST206 strains. Although trimethoprim

Table 6. Species and sequence type (ST) for Bcc clinical isolates.

Species group Number (%) ST Number

B. cenocepacia IIIA 9 (17.6) 31 9

B. cenocepacia IIIB 10 (19.6) 40 1

125 6

267 3

B.cenocepacia IIID 1 (2.0) 240 1

B. dolasa 3 (5.9) 72 3

B. vietnamiensis 7 (13.7) 319 7

B. multivorans 3 (5.9) 15 1

25 2

B. ambifaria 3 (5.9) 165 1

290 1

291 1

B. anthina 1 (2.0) 88 1

B. cepacia 1 (2.0) 3 1

B. contaminans 1 (2.0) 97 1

Other Bcc 12 (23.5) 116 5

154 3

206 4

https://doi.org/10.1371/journal.pone.0201835.t006
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was active against only two strains, an intermediate level of activity was shown on nineteen

strains. Meropenem was active against the largest number of strains compared to other antibiot-

ics tested. The mean level of resistance (i.e. the proportion of the 8 antibiotics tested that strains

were resistant to) was 75% ± 17 SD. Eight strains belonging to B. cenocepacia, B. multivorans
and B. dolasa exhibited 100% resistance.

Disc diffusion screening of essential oils for anti-Bcc activity using two

different media, TSA and ISA

Fifteen EOs had some activity against the tested strains on ISA. To examine the possibility of

medium-specific effects all EOs were also tested on TSA and only one positive effect on ISA

that was not reproduced on TSA was noted, for geranium EO against a clinical strain. In gen-

eral more activity was seen on TSA than on ISA, i.e. additional positives against clinical isolates

were seen for TSA: 6 for juniper, 2 for geranium, 5 for rosemary. Therefore results presented

here (Table 9) are for ISA as these are more likely to be robust / medium independent. Of the

fifteen EOs that showed activity, six were most active against Bcc members, showing activity

on all strains tested: lavender, lemongrass, marjoram, peppermint, tea tree and rosewood

Table 7. Antibiotic resistance of 51 Bcc clinical isolates. Number of isolates resistant to a given antibiotic is shown for each genomovar (percentage of isolates in

brackets).

Genomovar N Tobra Cipro Trimet Mero Colis Tet Ceftaz Aztreo

B. cenocepacia IIIA 9 9 (100) 9 (100) 4 (44) 1 (11) 9 (100) 9(100) 4 (44) 4 (44)

B. cenocepacia IIIB 10 10 (100) 10 (100) 6 (60) 3 (30) 10 (100) 10 (100) 7 (70) 8 (80)

B.cenocepacia IIID 1 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100)

B. dolasa 3 3 (100) 3 (100) 3 (100) 2 (67) 3 (100) 3 (100) 3 (100) 3 (100)

B. vietnamiensis 7 7 (100) 7 (100) 3 (43) 1 (14) 7 (100) 7 (100) 2 (29) 3 (43)

B. multivorans 3 3 (100) 3 (100) 1 (33) 1 (33) 3 (100) 3 (100) 3 (100) 3 (100)

B. ambifaria 3 3 (100) 3 (100) 3 (100) 0 (0) 3 (100) 3 (100) 1 (33) 3 (100)

B. anthina 1 1 (100) 1 (100) 1 (100) 0 (0) 1 (100) 1 (100) 0 (0) 0 (0)

B. cepacia 1 1 (100) 1 (100) 1 (100) 0 (0) 1 (100) 1 (100) 1 (100) 1 (100)

B. contaminans 1 1 (100) 1 (100) 0 (0) 0 (0) 1 (100) 1 (100) 0 (0) 1 (100)

Other Bcc 12 12 (100) 11 (92) 7 (58) 2 (17) 12 (100) 11 (92) 5 (42) 7 (58)

Total resistant 51 (100) 50 (98) 30 (59) 11 (22) 51 (100) 50 (98) 27 (53) 34 (67)

Total intermediate 0 1 (2) 19 (37) 13 (25) 0 0 2 (4) 0

Total sensitive 0 0 2 (4) 27 (53) 0 1 (2) 22 (43) 17 (33)

Tobra, tobramycin; Cipro, ciprofloxacin; Trimeth, trimethoprim; Mero, meropenem; Colis, colistin; Tet, tetracycline; Ceftaz, ceftazidime; Aztreo, aztreonam.

https://doi.org/10.1371/journal.pone.0201835.t007

Table 8. MIC breakpoints (mg/l) used to assign susceptibility categories.

Antibiotic Susceptible Intermediate Resistant

Tobramycin � 4 - > 4

Ciprofloxacin � 0.5 1 > 1

Colistin � 2 - > 2

Trimethoprim � 0.5 - > 4

Meropenem � 4 8 � 16

Aztreonam � 4 - > 8

Ceftazidime � 8 16 � 32

Tetracycline � 1 - > 2

https://doi.org/10.1371/journal.pone.0201835.t008
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(Table 9). Fennel, geranium, juniper and rosemary were active against some but not all strains.

Pine, black pepper, rosemary, sweet orange, camomile, cedarwood, bergamot, ylang ylang and

frankincense—were ineffective against all Bcc members tested. The six most active EOs were

selected for further study (Table 9). As with antibiotics, activity of these EOs was highly strain-

specific and no consistent patterns of genomovar / species level differences were observed.

MIC and MBC by broth microdilution method

Fifty-one strains of clinical origin and six strains from the Bcc reference panel were tested for

susceptibility to the six most active EOs chosen from the disc diffusion assay (Table 9). MICs

and MBCs are summarised in Table 10 and listed for each strain in S2 Table. The MIC50 (mini-

mum concentration required to inhibit half of strains tested) for lemongrass and rosewood

oils was 0.5% (5 mg / ml), indicating Bcc members were highly susceptible to these oils. Marjo-

ram, lavender, tea tree and peppermint had a similar but lower efficiency (2%; 20 mg /ml)

against 50% of the Bcc strains. The concentration required to inhibit 90% of the strains tested

(MIC90) ranged from 1% (10 mg /ml; lemongrass and rosewood) to 4% (40 mg / ml; marjo-

ram). For all EOs except lavender and peppermint, mean MBC, MBC50 and MBC90 values

were less than 4x higher than the corresponding MIC values and therefore these oils can be

defined as bacteriocidal rather than bacteriostatic [35,36].

Analysis of essential oil components

Qualitative analysis of the EOs marjoram, tea tree, rosewood and lemongrass, enabled the

detection of 55 different components that had relative abundances greater than 10% and / or

were flagged by the instrument (S3, S4, S5 and S6 Tables). The principal components for each

oil were identified as follows: marjoram, eucalyptol; tea tree, terpinen-4-ol; rosewood, linalool;

lemongrass, α-citral. Similarity index (SI) and reverse similarity index (RSI) mass spectral

match factors for all the compounds except dihydrolinalool were above 800, allowing good

identification of compounds.

Table 9. Number of clinical strains showing mean zones of inhibition> 7mm on ISA.

Essential oil Clinical strains (n = 51) Reference strains (n = 6)

Lavender 51 6

Lemongrass 51 6

Tea tree 51 6

Rosewood 51 6

Marjoram 51 6

Peppermint 51 6

Geranium 37 6

Fennel 35 6

Rosemary 29 6

Juniper 21 1

Frankincense 0 0

Black pepper 0 0

Camomile 0 0

YlangYlang 0 0

Bergamot 0 0

Sweet orange 0 0

Cedarwood 0 0

Pine 0 0

https://doi.org/10.1371/journal.pone.0201835.t009
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The majority of EO constituents were monoterpenes, including: monoterpene alcohols

such as terpinen-4-ol or geraniol; bicyclic monoterpenes such as camphene, borneol, pinenes,

sabinene or camphor; acyclic monoterpenoids (or derivatives) such as myrcene, geranyl ace-

tate, citronellol or linalool. Several sesquiterpenes such as cadinene, caryophyllene, caryophyl-

lene oxide or globulol were also present. Some compounds such as pinene, limonene, citrol,

dihydrolinalool, α-terpineol, terpiene-4-ol, p-cymene, myrcene and 1,8-cineole were present

in more than one oil.

Susceptibility of the Bcc to essential oil components

A range of EO components, present in the bacteriocidal oils, was tested against the Bcc test

panel: alloaromadendrene (-), camphene, camphor (R), caryophyllene(-)(trans), 1,8-cineole,

citral, geraniol, geranyl acetate, ledene(+), limonene (+) (R), linalool (±), linalyl acetate,

6-methyl-5-hepten-2-one, myrcene, α-pinene(-), β-pinene(-), p-cymene, sabienene hydrate,

α-terpinene, γ-terpinene, terpinolene, terpinen-4-ol, α-terpineol, terpinyl acetate (±), verbe-

neol. Only two of the essential oil components tested at concentrations of 8% (v/v) or less

showed any activity against the investigated strains: terpinen-4-ol, which is the main water sol-

uble component of tea tree oil and also present in marjoram oil ([37] and S3 and S4 Tables)

and geraniol, which is found in many EOs although not detected in any of those analysed here

(the derivative geranyl acetate was a major component of our lemongrass oil, but was not

found to be active against the Bcc). Both terpinen-4-ol and geraniol showed activity against all

the strains tested (S7 Table): MICs ranged from 0.125–0.5% (v/v) and 0.125–1% (v/v), respec-

tively; summary statistics are shown in Table 10. For the first time, terpinen-4-ol and geraniol

were found to inhibit Bcc strains.

Characterisation of geraniol and terpinen-4-ol mechanisms of action

against Bcc using time-kill studies in the presence and absence of a carbon

source

Bactericidal activity for most antibiotics depends on the bacterial growth phase, often requir-

ing ongoing metabolic activity and division of bacterial cells [38]. Whether this is true for the

EO components geraniol and terpinen-4-ol, however, is unknown. The kill-rate for cells in

two different growth phases was therefore studied: exponential and stationary phase popula-

tions of B. cenocepacia strain LMG 16656 were challenged. Compared with the killing curves

observed for stationary phase cultures treated with terpinen-4-ol (0.25%), log phase cultures

are killed slightly more swiftly (Fig 1). Approximately 180 min in contact with terpinen-4-ol

was required to kill all log phase cells, whereas 240 min was required to completely eradicate B.

cenocepacia in the stationary phase. In the case of geraniol (0.5%) treatment, complete kill was

observed after 180 min for both growth phases (Fig 2). After 30 and 60 min, however, station-

ary phase cultures experienced approximately only 1 log10 reduction, whereas log phase cul-

tures at the same time points reduced to 2 log10 and 3 log10, respectively.

Table 10. Minimum inhibitory and bactericidal concentrations (% v/v) for two essential oil components, terpinen-4-ol and geraniol, against clinical isolates and

control strains of the Bcc.

EO component Mean MIC a Mean MBC a MIC50 MBC50 MIC90 MBC90

Geraniol 0.4 0.4 0.5 0.5 1.0 1.0

Terpinen-4-ol 0.4 0.4 0.5 0.5 0.5 0.5

a) Mean of 51 clinical and 6 control strains.

https://doi.org/10.1371/journal.pone.0201835.t010
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If these EOCs are inhibiting metabolic processes they may not be active against populations

that are not growing, for example when suspended in PBS rather than a nutrient medium such

as ISB. There was no noticeable difference in the decline of mid-exponential phase cells of the

Fig 1. Time-kill analysis of Burkholderia cenocepacia strain LMG 16656 when exposed to terpinen-4-ol (0.25% v/

v). Cultures were grown to (A) stationary phase or (B) mid-exponential phase. Cell counts are mean values (n = 6);

error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g001
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Bcc upon challenge with terpinen-4-ol (Fig 3) and geraniol (Fig 4) in PBS compared with the

same challenge in ISB (Figs 1 and 2).

Fig 2. Time-kill analysis of Burkholderia cenocepacia strain LMG 16656 when exposed to geraniol (0.5% v/v).

Cultures were grown to (A) stationary phase or (B) mid-exponential phase. Cell counts are mean values (n = 6); error

bars show standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g002
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Characterisation of geraniol and terpinen-4-ol mechanisms of action

against Bcc using time-kill studies in the presence of an outer membrane

permeabilizer

Several outer membrane permeabilizers such as EDTA have been shown to improve the sus-

ceptibility of the resistant pathogen P. aeruginosa to various antibiotics and plant extracts [39].

Fig 3. Time-kill analysis of a mid-exponential phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to terpinen-4-ol in PBS (0.25%, v/v). Cell counts are mean values (n = 6); error bars show standard

deviation.

https://doi.org/10.1371/journal.pone.0201835.g003

Fig 4. Time-kill analysis of a mid-exponential phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to geraniol (0.5%, v/v) in PBS. Cell counts are mean values (n = 6); error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g004
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The MIC of EDTA against Bcc members was 20 mM and there was no difference in the growth

of the Bcc in the presence of 5 mM or 10 mM EDTA. However, while 5 mM EDTA alone had

no apparent antimicrobial effect, incorporation of EDTA into susceptibility studies using the

broth dilution method reduced the concentration of terpinen-4-ol and geraniol required to kill

the Bcc by two-fold, and so these lower concentrations (0.125% and 0.25%, respectively) were

used in time kill studies with EDTA (Figs 5 and 6). After 30 min of treatment with either EOC

in combination with EDTA, there was at least a 2 log10 reduction compared to the cells treated

with EOC alone (Figs 1, 2, 5 and 6). In both cases viability with EDTA fell below the detection

level by 60 min post exposure. When terpinen-4-ol and geraniol alone were used, 4 h and 3 h,

respectively were required for the cell count to fall below the detection level.

Characterisation of geraniol and terpinen-4-ol mechanisms of action

against Bcc using time-kill studies in the presence of an efflux inhibitor

When energy-dependent efflux mechanisms processes are inhibited, for example by the proto-

nophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the accumulation and hence

activity of antibiotics normally subject to efflux increases [40]. The bactericidal concentration of

CCCP against the Bcc was found to be 500 μM and so, to avoid toxicity, testing was carried out

at 250 μM. CCCP increased sensitivity to terpinen-4-ol (Fig 7) and geraniol (Fig 8) against the

Bcc. Although there was little difference in the reduction in cell numbers, the time required to

reach that viable number was reduced in the presence of CCCP (compare Figs 1B, 2B, 7 and 8).

Loss of cell membrane integrity: Leakage of potassium ions

As the internal environment of bacteria is rich in potassium ions, leakage of this ion from cells

can be used to monitor membrane damage. The addition of either terpinen-4-ol or geraniol

caused a significant increase in potassium leakage from Burkholderia cenocepacia cells as

shown in Fig 9. Leakage caused by geraniol was rapid, mostly occurring in the first 30 min

after addition. Leakage caused by terpinen-4-ol was slower but reached approximately the

Fig 5. Time-kill analysis of a stationary phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to terpinen-4-ol (0.125%, v/v) and 5 mM EDTA. Cell counts are mean values (n = 6); error bars show

standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g005
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same level by 240 min. There was no obvious difference between the cells suspended in water

and water with Tween80 with regard to the potassium release, indicating that the low concen-

tration of Tween80 used as an emulsifying agent for the EOs and EOCs did not significantly

damage cell membranes.

Fig 6. Time-kill analysis of a stationary phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to geraniol (0.25%, v/v) and 5 mM EDTA. Cell counts are mean values (n = 6); error bars show standard

deviation.

https://doi.org/10.1371/journal.pone.0201835.g006

Fig 7. Time-kill analysis of a mid-exponential phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to terpinen-4-ol (0.125%, v/v) and 250 μM CCCP. Cell counts are mean values (n = 6); error bars show

standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g007
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Loss of cell membrane integrity: Leakage of UV (260 nm)—absorbing

material

If the bacterial membrane is compromised, release of cytoplasmic constituents of the cell such

as nucleic acids occurs. Through the detection of absorbance at 260 nm, the amount of nucleic

acid content released from the cytoplasm can be measured giving an indication of loss of

membrane integrity [41]. Leakage of 260 nm-absorbing material followed essentially the same

pattern (Fig 10) as the time-kill studies (Figs 1 and 2). The leakage of macromolecules from B.

cenocepacia after being challenged with the two EOCs showed different patterns, but the total

amount of release was approximately the same after 240 min. In the case of geraniol, maxi-

mum leakage occurred in the first 60 min, whereas in the case of tepinen-4-ol, gradual release

occurred over a period of 180 min and then a rapid increase by 240 min. The cell concentra-

tion was 3.2×107 cfu ml-1.

Analysis of membrane fatty acid composition

Alteration of membrane fatty acid profiles of various Gram-negative bacteria in the presence

of EOCs have previously been reported [42]. We therefore examined the effect of terpinen-

4-ol and geraniol on B. cenocepacia membrane fatty acid profiles. GC FAME analysis of mem-

brane fatty acids showed clear peaks corresponding to methyl esters of C14:1 (myristoleic),

C16:1 (palmitoleic), C16:0 (palmitic), C17:1, C18:0 (stearic) and C18:1n9c (oleic) acids (Fig

11). Clear differences in most of these were observed in the chromatograms obtained for sam-

ples treated with terpinen-4-ol or geraniol, specifically C14:1 (myristoleic), C16:1 (palmitoleic),

C17:1, C18:0 (stearic) and C18:1n9c (oleic) acids. In each peak area was substantially reduced

in either the sample treated with terpinen-4-ol or geraniol or in both treatments.

Fig 8. Time-kill analysis of a mid-exponential phase culture of Burkholderia cenocepacia strain LMG 16656 when

exposed to geraniol (0.25%, v/v) and 250 μM CCCP. Cell counts are mean values (n = 6); error bars show standard

deviation.

https://doi.org/10.1371/journal.pone.0201835.g008
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Discussion

The 51 Bcc clinical isolates were all typed by MLST to species level and grouped into 18 STs.

No novel STs were reported and those isolates provisionally described as ‘other Bcc’ in the col-

lection were most similar to B. cenocepacia. As expected, STs previously identified as environ-

mental isolates, either within or outside the UK, were identified as causing infection in UK CF

patients. This strain collection was felt to be representative of the diversity of strains that might

Fig 9. Leakage of potassium from Burkholderia cenocepacia strain LMG 16656 when exposed toessential oil

components. Cultures were exposed to (A) terpinen-4-ol (0.25%, v/v); (B) geraniol (0.5%, v/v).Values shown are

means of three replicates; error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g009
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be encountered in patients with very severe CF-related lung disease in the UK during the col-

lection period.

From antibiotic resistance profiles determined for a range of antibiotics, most isolates were

clearly multidrug resistant, but there was no obvious association between resistance profiles

and STs or species of Bcc. This is consistent with previous studies that have found resistance

profiles to be highly heterogeneous through the Bcc and reinforces the need for alternative

therapeutic options [12,13,18].

Of the 15 EOs tested, the following six were found to most effective against the Bcc: laven-

der, lemongrass, marjoram, peppermint, tea tree and rosewood. Of these six, lemongrass and

rosewood oils were found to have the highest levels of activity with MIC50 and MIC90 values of

0.5% and 1.0% respectively. Comparison of MIC and MBC values suggested that all of the 6

oils with significant activity against the Bcc are bacteriocidal in action. A previous agar dilution

assay of 47 EOs against a range of Gram-negative rods found these six EOs all to be highly

active antimicrobials, with MICs below 2%, but only lemongrass was one of the 3 oils active

against Pseudomonas aeruginosa [21]. Marjoram EO has been shown to be an effective antimi-

crobial against Pseudomonas fluorescens [23]. A previous assessment of the effects of essential

oils on the Bcc tested three of the same oils as the current study and found that tea tree oil was

highly effective against 5 out of 18 strains tested; while an EO from a hybrid lavender related to

Lavandula augustifola was only weakly effective [20]. The same study also found that rosemary

oil was one of the most potent anti-Bcc EOs (against 10/18 strains), though we found it to be

only moderately effective, perhaps indicating the importance of batch-to-batch variation.

One important caveat about the potential use of EOs as therapeutic drugs is the difficulty in

ensuring batch-to-batch control of the component chemicals (EOCs) and their relative con-

centrations. It may make more sense from this point of view to focus on selected defined

EOCs and their potential for anti-Bcc activity, although such an approach may of course lose

the advantage of potential antimicrobial synergies between two or more EOCs found in a

Fig 10. Leakage of 260 nm-absorbing material from 3.2x107 cells of Burkholderia cenocepacia strain LMG 16656

when exposed to terpinen-4-ol (0.25%v/v) and geraniol (0.5%v/v). Values shown are normalised to the total material

released by heat treatment and means of three replicates; error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0201835.g010
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single oil (reviewed in [43,44]). We have examined a range of EOCs in this study and report

that only 2 of them, the alcohols terpinen-4-ol and geraniol, had significant anti-Bcc activity. It

is notable when comparing the activities of geraniol and linalool or terpinen-4-ol and α-terpin-

eol, two pairs of highly similar alcohols, that the position of the hydroxyl group seems to be

important in determining activity, as previously noted [45]. Geraniol has previously been

shown to have a potent antimicrobial activity against members of the Enterobacteriacae [24,46]

and a rather weak activity against P. aeruginosa [45,47], while terpinen-4-ol (the major compo-

nent of tea tree oil) is well known to have broad spectrum antimicrobial properties [47,48,49].

Although several studies have included time kill experiments to assess antibacterial activity

of EOs or EOCs, none was focussed on the Bcc [50,51,52,53,54]. Most antibiotic bactericidal

activity depends on the bacterial growth phase, often requiring on-going metabolic activity

and division of bacterial cells [37]. Nutrient limitation results in the slowing of metabolic pro-

cesses and the resultant non-growing cells can be highly tolerant to antibiotics [55]. We found

that geraniol and terpinen-4-ol were effective against both stationary phase and log phase cul-

tures, although at least in the case of terpinen-4-ol log phase cells were slightly more suscepti-

ble. There was no noticeable difference in the decline of mid-exponential phase cells of the Bcc

upon challenge with terpinen-4-ol (Fig 3) and geraniol (Fig 4) in PBS compared with the same

Fig 11. Effect of terpinen-4-ol (0.25%v/v) and geraniol (0.5%v/v) on the membrane fatty acid composition of Burkholderia cenocepacia strain LMG 16656. Bacteria

were grown at 28˚C on TSA. Fatty acid methyl esters (FAME) were analysed by GC.

https://doi.org/10.1371/journal.pone.0201835.g011
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challenge in ISB (Figs 1 and 2). It is therefore assumed that the cells do not need to be growing

for those compounds to exert a bactericidal effect.

As with other Gram negative pathogens, efflux pumps play an important role in multi-

drug-resistance in Bcc bacteria and in resistance to antimicrobial chemicals more widely

[56,57]. The time-kill experiments reported here suggest that energy-dependent efflux mecha-

nisms are involved in determining the accumulation of terpinen-4-ol or geraniol inside Bcc

cells and therefore that it may be possible to increase the anti-Bcc activity of these EOCs using

an efflux inhibition strategy.

Many antimicrobial compounds that act on the bacterial cytoplasmic membrane, including

chlorhexidine Tea Tree oil and Lemongrass oil, induce the loss of 260 nm-absorbing materials

assumed to be nucleic acids [41,58,50]. Potassium leakage is also a useful indicator of mem-

brane damage as it leaks out of the cells very rapidly, and can be easily detected by atomic

absorption spectrophotometry [59]. The results from both of these assays strongly suggest that

geraniol and terpinen-4-ol are membrane-disrupters. In agreement with this, changes in the

membrane fatty acid composition were readily apparent by GC analysis–specifically in the fol-

lowing fatty acids C14:1 (myristoleic), C16:1 (palmitoleic), C17:1, C18:0 (stearic) and

C18:1n9c (oleic).

This study began by confirming widespread and heterogenous multidrug resistance in a Bcc

clinical isolate collection. Assessment of antimicrobial activity of a range of EOs and EOCs

against these Bcc isolates identified six EOs with significant activity and demonstrated that ter-

pinen-4-ol and geraniol were effective anti-Bcc agents. Detailed mechanistic studies suggest that

these 2 EOCs are effective against non-growing cells in an efflux dependent manner and that

the observed anti-Bcc activity is based on membrane disruption. Whether or not any of these

EOs or EOCs ultimately prove useful as therapeutic drugs, for example to treat Bcc infections in

CF patients, will depend on a number of factors including pharmacokinetics and toxicology.

Geraniol would generally seem to be of very low toxicity and its use in cosmetic fragrances

already results in substantial human exposure [60]. Terpinen-4-ol has previously been suggested

as a potentially useful topical antimicrobial on the basis of a lack of toxicity against fibroblast

cells in vitro [61] and incidentally has notable anti-inflammatory properties [37,62].
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